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A simple model Hamiltonian is derived to describe the hexagonal disordered D,,; and hexagonal ordered
D, columnar phases of discotic liquid crystals with a restricted set of parameters. Characterizing a rigid
helical column by an XY-like angular variable and by an Ising-like helicity variable reduces the three-
dimensional problem to a coupled XY -Ising Hamiltonian on a triangular lattice. A Landau-type mean-field free
energy expansion for two kinds of order parameter is described. The period-3 phase diagram exhibits many
types of phases including those with total Ising (helicity) disorder with XY order. This feature is proposed as
the structure of the hexa(hexylthio)triphenylene (HHTT) compounds in the D4 phase. The phase diagram also
shows phases with two columns of opposite helicity to the third one and phases where 1/3 of the columns have
helicity disorder. These helicity states are relevant to the D, phase of (HHTT) compounds.

PACS number(s): 61.30.Cz, 64.70.Md, 75.10.Dg

Recent experiments performed on discotic liquid
crystalline compounds [such as hexa(hexylthio)triphenylene
(HHTT)] have revealed interesting phases [1,2]. At first and
relevant to our study, these experiments report the character-
istics of the phases exhibited by the HHTT compound [1].
Apart from the high temperature isotropic liquid I phase
(T>93°C) and the low temperature monoclinic crystal K
phase (7<<62 °C), two intermediate columnar liquid crystal-
line phases are encountered. At 7=93 °C, the disklike HHTT
molecules form columns themselves arranged on a triangular
lattice. This liquid crystalline hexagonal disordered discotic
(Dy,4) phase is characterized by the long-range triangular or-
der of the positions of the columns and liquidlike [3] posi-
tional and orientational order of the molecules within a col-
umn. As the temperature is further reduced (7'=70 °C), the
system enters a new phase (the discotic hexagonal ordered
D,, or H liquid crystalline phase) which was viewed as a
simultaneous ordering of the intracolumnar position and ori-
entation of the molecules (an order-disorder transition within
columns, in a system that retains a two-dimensional array of
columns). We advocate that the true nature of this phase is
still an open question and remains to be further specified.
The order of phase transitions has been reported as continu-
ous for the isotropic (I)«>D,, phase transition and first order
for the other two [2]. The second interesting aspect is the
particular molecular configuration in the D, phase [1,2]. In
this phase, the D3 symmetry molecules are equally spaced in
the stack and rotated by an angle « of approximately 45°
from one to the other [see Fig. 1(a)]. The columns may be
viewed as helices that can have either left-handed or right-
handed helicity. The columns are arranged on a triangular
array composed of three sublattices [see Fig. 1(b)] resulting
from two orderings. First, one in every three columns is dis-
placed by half an intracolumnar intermolecular distance in
the Z direction (along the stacking axis), the other two being
at the same height [see Fig. 1(b)]. This displacement is
thought to be a mechanism to relieve part of the frustration
due to interdigitation of molecules in a triangular environ-
ment. Second, even if the interpretation of experimental re-
sults is very sensitive to the helicity pattern of the columns
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[2], there emerge two most probable patterns. The first
scheme has the helicity of the displaced column opposite to
the other two columns, and the second has a random helicity
for the displaced column while the undisplaced columns
have the same helicity.
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FIG. 1. (a) Schematic side view of a half period of HHTT in the D,
phase. The full period is composed of 8 molecules of D3 symmetry sym-
bolized by triangles. (b) The period-3 triangular lattice of columns. Dis-
placed columns are represented by open dots and undisplaced columns by
full dots. The dotted lines represent the unit cell in the D,, phase.
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A theoretical effort has been deployed to try to understand
these and other features of the phases of the HHTT com-
pound. An early model was developed to account for the
random helicity sometimes proposed for the D, phase [4].
The anisotropy in the intermolecular potential parameters
was shown to be a possible mechanism responsible for the
randomness in one of the columns within this simple model.
In addition, the ground state phase diagram with respect to
helical pitch and the strength of the anisotropy field was
investigated [5]. A helical pitch of 8 molecules (threefold
internal symmetry) was found to be unstable to the sixfold
anisotropy field, the stable structure having a higher order of
commensurability or being incommensurate. In contrast, the
threefold anisotropy field stabilizes the 8-molecule helical
pitch of the columns for small and moderate values of the
anisotropy field. This leads us to conclude that even in the
low temperature region of the D, phase, the displaced col-
umns are strongly perturbed by the sixfold anisotropy field
created by their environment. The commensurability effects
at T#0 are presently being investigated, and will be re-
ported elsewhere [6].

The first step in developing a phenomenological Hamil-
tonian for the interaction between two helical columns is the
description of their state by structural parameters. The helic-
ity of the columns is represented by an Ising-like variable
{K;} and the in-plane orientation of the columns by the angle
{6;} (of XY character) made by one of the branches of a
molecule with the x axis in a reference plane [see Fig. 1(a)].
This represents by itself a simplifying approximation that
neglects all fluctuations in the rotation and vertical position
of individual molecules. The change in helicity of a column,
which could occur via the untwisting of the helix, is depicted
in a first-order approximation as a simple flip of the variable
{K;}. The vertical position degrees of freedom of each mol-
ecule are intentionally omitted on the basis that they are
presumed to be rigidly frozen by steric hindrance interac-
tions much stronger than those controlling the molecular an-
gular degrees of freedom.

Labeling a column by its site index i, the phenomenologi-
cal Hamiltonian is derived using the mass density function
for a column described by the {K;} and {6,} (in cylindrical
coordinates) [4].

MXi(p,6—6,,2)= 2, {A¥(p,z) cos [n(6—6,)]
n=0

+B,(p,2) sin [n(0 —0)1}. (1)

The goal is to construct a Hamiltonian from the moments
'/fﬁf;(gi) of the mass density (1) defined by

Kicg)= 4 fzﬂdel'"MK' 06— 06 2
¢lm( z)—(,n_p)3 0 Xy (P> i’Z)’ ( )

with x = pcos@ and y = psiné, that is invariant with respect to
the symmetry group of the triangular lattice. Note that
z/;ﬁ(ﬁ,-) is still a function of p and z. The first nonzero inde-
pendent moments are such that /+m=3. Constructing a
Hamiltonian to second order in the #’s that is invariant with
respect to the two-dimensional triangular lattice symmetry
group gives, for nearest neighbor interactions only,
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T=—(J12) 2 [Y5(0)vhi(6)+ whi(6) yki(0)]
(ij)

—(G/2) 2 i) 4d(6)). 3)
(i)

In order to restrict the parameter space, an averaging pro-
cess over p and z is performed. Keeping only the important
features of the helices (D3 symmetry and 8 molecule pitch),
the columns can be idealized as three intertwined spirals. The
mass density of this idealized column is given by

2
MXi(p,6—6,,2)x8(p—R) >, 8(2mwz/1,)K;— (60— 6,)
n=0

—(2mn/3)). 4)

The spatial extent of a full 8-molecule period is /, and the
diameter of the column is 2R. The Hamiltonian (3) can then
be rewritten as

' ==('"12) 2, (1+KK,)cos(p;— ;)
(ij)

—(G'/2) 2 (1—KKj)cos(d;+ b)), (5)
[4))

with ¢;=36;. This Hamiltonian describes the interaction be-
tween neighboring columns on a triangular lattice with
K;=*1 and 0<< ¢;<2 7 and is similar to that of Ref. [4] but
with the addition of helical degrees of freedom. Note that the
sign of G' is not determinant since changing G’ — — G’ and
&i— ¢+ (7/2) leaves Hamiltonian (5) unchanged.

In this idealization of the helix by the mass density (4), it
is easy to see that the displacement by half an intracolumnar
intermolecular distance of a column can be viewed as a rigid
rotation of a/2 [see Fig. 1(a)]. The Zz-direction positional
frustration, transposed as a part of the angular frustration, is
relieved by solving the whole angular frustration problem.
This also saves us from the introduction of anisotropy in the
exchange parameters. In fact, if we assume that the interac-
tion between molecules is dependent only on their distances,
we are led to conclude that exchange parameters between
neighboring columns (displaced and undisplaced) must be
close to each other (the distances being different [2] by less
than 1%).

A similar model (with G’ =0) that couples Ising (K;) and
XY variables on a square lattice has been studied extensively
in relation to the fully frustrated XY models and Josephson
junction arrays in a transverse magnetic field [7]. The Hamil-
tonian (5) has two added features. First, the G’ term which
results from the octupolar nature of the columns, and second,
both Ising variables (K;) and XY variables are inscribed on a
triangular lattice. For J' <0, this last feature brings an added
double-valued symmetry for the chirality ordering of the ro-
tational degrees of freedom around a triangular plaquette. As
a result of this, our system has two sets of competing Ising
variables: the helicities K; of the columns and the chirality of
a plaquette.

For the purpose of revealing the origins of the helicity and
XY frustrations in these systems, the two terms of the Hamil-
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tonian (5) are discussed separately. For G’ =0, irrespective
of the sign of J', the ordering of the angular degrees of
freedom brings about a ferromagnetic order of the helicities
K;. At a helicity domain wall in a ferromagnetic ordered
state, the prefactor (1+K;K;) vanishes, leaving uncoupled
orientational degrees of freedom. As a result, we understand
that both the helicity and angular transitions occur at the
same temperature [7]. The Ising helicity variables should
show true long-range ferromagnetic order, while the XY
variables should exhibit pure Kosterlitz-Thouless order for
J'>0, and a new single transition combining Kosterlitz-
Thouless ordering of the XY variables with long-range order
of the staggered chirality for the triangular plaquettes in the
case of J'<0.

For J' =0, irrespective of the sign of G’, the second term
of Hamiltonian (5) breaks the rotation invariance of the XY
variables, permitting true two-dimensional XY order. Fur-
thermore, cos(¢;+ ¢;) can be made either positive or nega-
tive to accommodate the sign of G’ (without further frustra-
tion), leaving an effective antiferromagnetic exchange
parameter for K;K; on a triangular lattice. These Ising vari-
ables are frustrated and forced in a disordered state at all
temperatures [8]. Now, if both J' and G’ are different from
zero, the competition between the two terms frustrates the
system even further. Note that not all these features of
Hamiltonian (5) will be revealed here, due to the limitations
of the mean-field approximation, and will be addressed else-
where [9].

The mean-field method of Bak and von Boehm [10] is
being adapted here for two kinds of order parameters (corre-
sponding to {K;} and {6;}). We start the derivation of the
Landau-type expansion of the free energy of (5) by defining
pseudospin variables and their average values

S;=sing;, (Si), ki=(K;). (6)

Hamiltonian (5) is reduced to the mean-field Hamiltonian

C;=cos¢;, 61:<Ci>7 Si=

— > [h§Ci+hiS+hEK,] )

i

%MF:

with
hE=2 [(J'+G)+(J' =G ki,
J

h{=2 [ =G+ +Gkk)s;,

Jj
hf=2 [(J'=G")ee

j

To sixth order in the expansion, the free energy is

;U +G)ssilk; . (8)

2 4 6 2 2572
’ (ci+s?)
-1 _l e 2 2 i i
2 2 12 30+(c TSt
5(c2+s5H3] 1
|3 2 U =G e,

(ij)
+ (' +G")sislkiki+ (T =G )sis;+ (T +G')eiej}

©)

FIG. 2. Ground state phase diagram for Hamiltonian (5). The + and
— refer to the helicity configuration ({K;}). Solid thick lines delimit differ-
ent helicity configuration domains. Broken lines delimit phases with differ-
ent relation between angles [the region between solid thick and broken lines

has ¢+ ¢ =— (1 + ¢3)].

We assume that at 7=0 and throughout the entire thermal
phase diagram, the period-3 basal plane structure is main-
tained (other studies, such as Monte Carlo, could verify this
assumption). The ground state phase diagram is shown in
Fig. 2. It has been obtained by minimizing the interaction
energy (5) for three sites. The phase diagram is obtained by
numerically minimizing the free energy (9) for the three sites
of an elementary plaquette (Fig. 3 and Table I). The knowl-
edge of the T=0 phase diagram has been used in the very
low temperature region where the mean-field approximation
fails to give good results.
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FIG. 3. Mean-field phase diagram of model (5) for G’ = — 1.0. Solid and
dashed lines represent first- and second-order transitions. Critical end points
are represented by squares.
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The high temperature isotropic phase I has both Ising and
XY disorder. As the temperature is lowered, the first phases
to stabilize (except for a small region around
J'=—0.4|G']) have total helicity disorder with an XY order
(phases II and III). Note that we are reporting these phases
with Ising disorder and XY order in coupled XY -Ising mod-
els. This is in agreement with early Monte Carlo and renor-
malization group results [9]. Reducing the temperature fur-
ther stabilizes phases with partial helicity order for
J'<—0.75|G’| (phases IV and V). The low temperature
phases have both helicity and XY orders (phases VI-IX). In
the region around J'=—0.4|G’|, the system goes directly
from the high temperature I phase to the low temperature
helicity and XY ordered phases (phases VII or VIII) through
a first-order transition. The two second-order transition lines
meet first-order transition lines at critical end points located
at (J',T) = (—0.47,0.73) and (—0.25,0.75) in units of
|G'| as indicated by squares on Fig. 3. At the present time,
this region lacks a proper theoretical treatment, and a thor-
ough study of the critical end points is under way.

We have also determined the G'=0 phase diagram to
compare with earlier work [7]. For both J'>0 and J' <0,
only two phases are obtained: the low temperature phase
with full helicity and XY orders and the high temperature
disordered I phase. These phases are separated by a first-
order phase transition. For J'>0 (J'<<0), the helicity con-
figuration is (+++) and ferromagnetic ¢;=¢; (120° state
¢;— ¢;=/3) for the XY part, with a critical temperature of
T.=1.1J' (T.=0.55|J']|). There is no intermediate helicity
disordered with XY ordered phase. It is now clear that the
G’ term is responsible for the stabilization of phases with
partial or full helicity disorder with XY order and that it is at
the origin of the helicity frustration as suggested earlier.

The mean-field phase diagram (Fig. 3) of Hamiltonian (5),
constructed to model the HHTT compound in its D, phase,
is in qualitative agreement with experimental observations. It
is to be remembered that these results are relevant only in
regions of the phase diagram where fluctuations can be ig-
nored. Without anisotropy in the exchange parameters, it is
possible to stabilize the helicity configurations most probable
for HHTT in the D, phase, namely (0+ +) and (—+ +),
over a large portion of the phase diagram. A surprising fea-
ture of model (5), for G’ #0, is the presence of phases with
total helicity disorder with XY order (phase II and III). It is
tempting to naively associate these phases with the liquid
crystalline D, phase of HHTT, since in this phase the col-
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TABLE I. Explicit configurations associated with the mean-field
phase diagram of Fig. 3.

Phase Helicity Order parameters

I (000) k;=0, c;=0,s;,=0

II (000) k;=0,c;=0, c,=—c3, 5;,=0

I (000) k;=0, ¢;=0, s;=s;

v 0+ +) k1=0, ky=k;, ¢;=0, 5;=0, s,=—353
\'% (0+-) k=0, ky=—ks3, c;=0,5,=0, s,=53
VI (+++) ki=ky=ks, ¢;=0, s,=|s,|=|s3]|
vl (—++) lki|=ky=k;, c;=0, s;=5,=53
VIl (—++) ki=—ky=—ks3, c1=|c,y|=]csl, 5;=0
X (+++) ki=k;, c;=cj, 5;=0

umns conserve their two-dimensional structure [2]; the full
helicity disorder would account for the disappearance of the
peaks related to the helicity of the columns [1,2]. This bold
assumption would have to be checked both experimentally
and theoretically with calculations going beyond the mean-
field approximation. Note that even the order of transitions
would be correct (first order for the D, <> D, transition and
second order for the D, <1 transition). Instead of being an
order-disorder transition within the columns, we infer that
the D, D, transition is the result of the two-dimensional
disorder of the helicity from one column to the other, thus
explaining the fact that the two-dimensional array of col-
umns is preserved during this transition [1,2].

In conclusion, we have derived a simple Hamiltonian to
model the HHTT compound in the D, phase and, to some
extent, the D), phase. The derivation is based on the sym-
metry of helical columns, and the resulting Hamiltonian (5)
couples Ising and XY variables. The mean-field phase dia-
gram reveals the existence of (—+ +) and (0+ +) phases,
considered to be the most probable helicity configurations of
HHTT in the D,,, phase. The G’ term, resulting from the fact
that the octupolar entities are disposed on a triangular lattice,
is responsible for new partial or total helicity disordered with
XY order phases. It is suggested (and would have to be veri-
fied experimentally) that the D, phase of HHTT is charac-
terized by full helicity disorder, rather than intracolumnar
positional and orientational disorder [3].
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